Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants

نویسندگان

  • Ines Kutzner
  • Anja Richter
  • Katharina Gordt
  • Jörn Dymke
  • Philipp Damm
  • Georg N. Duda
  • Reiner Günzl
  • Georg Bergmann
چکیده

Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of footwear on knee joint loading during walking--in vivo load measurements with instrumented knee implants.

Since footwear is commonly used every day, its influence on knee joint loading and thereby on the development and progression of osteoarthritis may be crucial. So far the influence of footwear has been examined only indirectly. The aim of this study was to directly measure the effect of footwear on tibiofemoral contact loads during walking. Instrumented knee implants with telemetric data transm...

متن کامل

Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions

Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...

متن کامل

Joint Loading in Runners Does Not Initiate Knee Osteoarthritis.

Runners do not have a greater prevalence of knee osteoarthritis (OA) than nonrunners. The hypothesis that joint loads in running do not cause OA is forwarded. Two mechanisms are proposed: 1) cumulative load, which is surprisingly low in running, is more important for OA risk than peak load, and 2) running conditions cartilage to withstand the mechanical stresses of running.

متن کامل

Design and Implementation of an Instrumented Pedal for Cycling Biomechanics Research

Cycling is a common, low-impact activity used for recreation, exercise, and rehabilitation. Knee joint loading can be predicted using inverse dynamic analyses of pedal load cell and kinematic data measured during cycling biomechanics experiments. Several studies have successfully measured foot loading at the pedals, e.g. by using custom instrumented pedal spindles outfitted with strain gauges a...

متن کامل

Loading of the knee joint during activities of daily living measured in vivo in five subjects.

Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living. Average peak resultant fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017